Sunday, February 14, 2016

A good political score explains variation in alcohol consumption?



Does political score explains variation in alcohol consumption?

My model with data from Gapminder is:

model2 = smf.ols(formula='alcconsumption ~ C(polityscore)', data=sub).fit()

print (model2.summary())

At first look the result looks like there polityscore can explain variations in alcohol consumption.

Output:


                           OLS Regression Results                            
==============================================================================
Dep. Variable:         alcconsumption   R-squared:                       0.326
Model:                            OLS   Adj. R-squared:                  0.227
Method:                 Least Squares   F-statistic:                     3.309
Date:                Sun, 14 Feb 2016   Prob (F-statistic):           1.79e-05
Time:                        13:54:24   Log-Likelihood:                -451.31
No. Observations:                 158   AIC:                             944.6
Df Residuals:                     137   BIC:                             1009.
Df Model:                          20                                         
Covariance Type:            nonrobust                                         
==========================================================================================
                             coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------------------
Intercept                  0.8150      3.197      0.255      0.799        -5.507     7.137
C(polityscore)[T.-9.0]     3.7383      4.127      0.906      0.367        -4.423    11.899
C(polityscore)[T.-8.0]    -0.0950      4.521     -0.021      0.983        -9.035     8.845
C(polityscore)[T.-7.0]     4.3783      3.453      1.268      0.207        -2.450    11.206
C(polityscore)[T.-6.0]     3.4917      4.127      0.846      0.399        -4.669    11.653
C(polityscore)[T.-5.0]     4.0350      4.521      0.892      0.374        -4.905    12.975
C(polityscore)[T.-4.0]     2.6267      3.691      0.712      0.478        -4.673     9.926
C(polityscore)[T.-3.0]     2.9000      3.691      0.786      0.433        -4.400    10.200
C(polityscore)[T.-2.0]     1.5470      3.783      0.409      0.683        -5.933     9.027
C(polityscore)[T.-1.0]     6.2400      3.915      1.594      0.113        -1.502    13.982
C(polityscore)[T.0.0]      1.8700      3.691      0.507      0.613        -5.430     9.170
C(polityscore)[T.1.0]      3.7783      4.127      0.915      0.362        -4.383    11.939
C(polityscore)[T.2.0]      1.6083      4.127      0.390      0.697        -6.553     9.769
C(polityscore)[T.3.0]      4.1850      4.521      0.926      0.356        -4.755    13.125
C(polityscore)[T.4.0]      9.1025      3.915      2.325      0.022         1.360    16.845
C(polityscore)[T.5.0]      4.1693      3.625      1.150      0.252        -2.999    11.337
C(polityscore)[T.6.0]      4.3460      3.502      1.241      0.217        -2.579    11.271
C(polityscore)[T.7.0]      3.8642      3.434      1.125      0.262        -2.926    10.655
C(polityscore)[T.8.0]      8.2171      3.361      2.445      0.016         1.571    14.863
C(polityscore)[T.9.0]      8.1736      3.418      2.392      0.018         1.416    14.932
C(polityscore)[T.10.0]     9.6331      3.295      2.923      0.004         3.117    16.149
==============================================================================
Omnibus:                       17.250   Durbin-Watson:                   1.909
Prob(Omnibus):                  0.000   Jarque-Bera (JB):               19.895
Skew:                           0.750   Prob(JB):                     4.79e-05
Kurtosis:                       3.880   Cond. No.                         43.1
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Then we have a look at the relationship between mean polityscore and alcconsumption
m2= sub.groupby('polityscore').mean()

means for alcconsumption by polityscore
             alcconsumption
polityscore                
-10.00                 0.82
-9.00                  4.55
-8.00                  0.72
-7.00                  5.19
-6.00                  4.31
-5.00                  4.85
-4.00                  3.44
-3.00                  3.71
-2.00                  2.36
-1.00                  7.05
0.00                   2.69
1.00                   4.59
2.00                   2.42
3.00                   5.00
4.00                   9.92
5.00                   4.98
6.00                   5.16
7.00                   4.68
8.00                   9.03
9.00                   8.99
10.00                 10.45

The null hypoteses is that the alcohol variations is explained by politics. A tukey test, that accounts for what levels of politicscore are affecting the output shows that there is seldom a level that rejects the null hypotesis. We should be doubting that there is a influence.

import statsmodels.stats.multicomp as multi 
mc1 = multi.MultiComparison(sub['alcconsumption'], sub['polityscore'])
res1 = mc1.tukeyhsd()
print(res1.summary())
Multiple Comparison of Means - Tukey HSD,FWER=0.05
==============================================
group1 group2 meandiff  lower    upper  reject
----------------------------------------------
-10.0   -9.0   3.7383  -11.2896 18.7663 False 
-10.0   -8.0   -0.095  -16.5573 16.3673 False 
-10.0   -7.0   4.3783  -8.1949  16.9516 False 
-10.0   -6.0   3.4917  -11.5363 18.5196 False 
-10.0   -5.0   4.035   -12.4273 20.4973 False 
-10.0   -4.0   2.6267  -10.8147 16.0681 False 
-10.0   -3.0    2.9    -10.5414 16.3414 False 
-10.0   -2.0   1.547   -12.2263 15.3203 False 
-10.0   -1.0    6.24   -8.0168  20.4968 False 
-10.0   0.0     1.87   -11.5714 15.3114 False 
-10.0   1.0    3.7783  -11.2496 18.8063 False 
-10.0   2.0    1.6083  -13.4196 16.6363 False 
-10.0   3.0    4.185   -12.2773 20.6473 False 
-10.0   4.0    9.1025  -5.1543  23.3593 False 
-10.0   5.0    4.1693  -9.0299  17.3685 False 
-10.0   6.0    4.346   -8.4056  17.0976 False 
-10.0   7.0    3.8642  -8.6398  16.3682 False 
-10.0   8.0    8.2171  -4.0208   20.455 False 
-10.0   9.0    8.1736  -4.2707  20.6179 False 
-10.0   10.0   9.6331  -2.3657   21.632 False 
 -9.0   -8.0  -3.8333  -18.8613 11.1946 False 
 -9.0   -7.0    0.64   -9.9864  11.2664 False 
 -9.0   -6.0  -0.2467  -13.6881 13.1947 False 
 -9.0   -5.0   0.2967  -14.7313 15.3246 False 
 -9.0   -4.0  -1.1117  -12.7523 10.5289 False 
 -9.0   -3.0  -0.8383  -12.4789 10.8023 False 
 -9.0   -2.0  -2.1913  -14.2137  9.831  False 
 -9.0   -1.0   2.5017  -10.0716 15.0749 False 
 -9.0   0.0   -1.8683  -13.5089  9.7723 False 
 -9.0   1.0     0.04   -13.4014 13.4814 False 
 -9.0   2.0    -2.13   -15.5714 11.3114 False 
 -9.0   3.0    0.4467  -14.5813 15.4746 False 
 -9.0   4.0    5.3642  -7.2091  17.9374 False 
 -9.0   5.0    0.431   -10.9291  11.791 False 
 -9.0   6.0    0.6077  -10.2291 11.4445 False 
 -9.0   7.0    0.1259  -10.4184 10.6702 False 
 -9.0   8.0    4.4788  -5.7486  14.7061 False 
 -9.0   9.0    4.4352  -6.0382  14.9087 False 
 -9.0   10.0   5.8948  -4.0453  15.8348 False 
 -8.0   -7.0   4.4733  -8.0999  17.0466 False 
 -8.0   -6.0   3.5867  -11.4413 18.6146 False 
 -8.0   -5.0    4.13   -12.3323 20.5923 False 
 -8.0   -4.0   2.7217  -10.7197 16.1631 False 
 -8.0   -3.0   2.995   -10.4464 16.4364 False 
 -8.0   -2.0   1.642   -12.1313 15.4153 False 
 -8.0   -1.0   6.335   -7.9218  20.5918 False 
 -8.0   0.0    1.965   -11.4764 15.4064 False 
 -8.0   1.0    3.8733  -11.1546 18.9013 False 
 -8.0   2.0    1.7033  -13.3246 16.7313 False 
 -8.0   3.0     4.28   -12.1823 20.7423 False 
 -8.0   4.0    9.1975  -5.0593  23.4543 False 
 -8.0   5.0    4.2643  -8.9349  17.4635 False 
 -8.0   6.0    4.441   -8.3106  17.1926 False 
 -8.0   7.0    3.9592  -8.5448  16.4632 False 
 -8.0   8.0    8.3121  -3.9258   20.55  False 
 -8.0   9.0    8.2686  -4.1757  20.7129 False 
 -8.0   10.0   9.7281  -2.2707   21.727 False 
 -7.0   -6.0  -0.8867  -11.513   9.7397 False 
 -7.0   -5.0  -0.3433  -12.9166 12.2299 False 
 -7.0   -4.0  -1.7517  -9.9828   6.4795 False 
 -7.0   -3.0  -1.4783  -9.7095   6.7528 False 
 -7.0   -2.0  -2.8313  -11.5941  5.9314 False 
 -7.0   -1.0   1.8617  -7.6428  11.3662 False 
 -7.0   0.0   -2.5083  -10.7395  5.7228 False 
 -7.0   1.0     -0.6   -11.2264 10.0264 False 
 -7.0   2.0    -2.77   -13.3964  7.8564 False 
 -7.0   3.0   -0.1933  -12.7666 12.3799 False 
 -7.0   4.0    4.7242  -4.7803  14.2287 False 
 -7.0   5.0    -0.209  -8.0384   7.6203 False 
 -7.0   6.0   -0.0323  -7.0811   7.0164 False 
 -7.0   7.0   -0.5141  -7.1043   6.0761 False 
 -7.0   8.0    3.8388  -2.2314   9.909  False 
 -7.0   9.0    3.7952   -2.681  10.2715 False 
 -7.0   10.0   5.2548  -0.3177  10.8273 False 
 -6.0   -5.0   0.5433  -14.4846 15.5713 False 
 -6.0   -4.0   -0.865  -12.5056 10.7756 False 
 -6.0   -3.0  -0.5917  -12.2323 11.0489 False 
 -6.0   -2.0  -1.9447  -13.967  10.0777 False 
 -6.0   -1.0   2.7483  -9.8249  15.3216 False 
 -6.0   0.0   -1.6217  -13.2623 10.0189 False 
 -6.0   1.0    0.2867  -13.1547 13.7281 False 
 -6.0   2.0   -1.8833  -15.3247 11.5581 False 
 -6.0   3.0    0.6933  -14.3346 15.7213 False 
 -6.0   4.0    5.6108  -6.9624  18.1841 False 
 -6.0   5.0    0.6776  -10.6824 12.0377 False 
 -6.0   6.0    0.8543  -9.9825  11.6911 False 
 -6.0   7.0    0.3726  -10.1717 10.9169 False 
 -6.0   8.0    4.7254  -5.5019  14.9528 False 
 -6.0   9.0    4.6819  -5.7916  15.1554 False 
 -6.0   10.0   6.1415  -3.7986  16.0815 False 
 -5.0   -4.0  -1.4083  -14.8497 12.0331 False 
 -5.0   -3.0   -1.135  -14.5764 12.3064 False 
 -5.0   -2.0   -2.488  -16.2613 11.2853 False 
 -5.0   -1.0   2.205   -12.0518 16.4618 False 
 -5.0   0.0    -2.165  -15.6064 11.2764 False 
 -5.0   1.0   -0.2567  -15.2846 14.7713 False 
 -5.0   2.0   -2.4267  -17.4546 12.6013 False 
 -5.0   3.0     0.15   -16.3123 16.6123 False 
 -5.0   4.0    5.0675  -9.1893  19.3243 False 
 -5.0   5.0    0.1343  -13.0649 13.3335 False 
 -5.0   6.0    0.311   -12.4406 13.0626 False 
 -5.0   7.0   -0.1708  -12.6748 12.3332 False 
 -5.0   8.0    4.1821  -8.0558   16.42  False 
 -5.0   9.0    4.1386  -8.3057  16.5829 False 
 -5.0   10.0   5.5981  -6.4007   17.597 False 
 -4.0   -3.0   0.2733  -9.2312   9.7778 False 
 -4.0   -2.0  -1.0797  -11.0481  8.8887 False 
 -4.0   -1.0   3.6133   -7.013  14.2397 False 
 -4.0   0.0   -0.7567  -10.2612  8.7478 False 
 -4.0   1.0    1.1517  -10.4889 12.7923 False 
 -4.0   2.0   -1.0183  -12.6589 10.6223 False 
 -4.0   3.0    1.5583  -11.8831 14.9997 False 
 -4.0   4.0    6.4758  -4.1505  17.1022 False 
 -4.0   5.0    1.5426  -7.6162  10.7014 False 
 -4.0   6.0    1.7193  -6.7818  10.2204 False 
 -4.0   7.0    1.2376  -6.8874   9.3625 False 
 -4.0   8.0    5.5904  -2.1187  13.2996 False 
 -4.0   9.0    5.5469  -2.4859  13.5797 False 
 -4.0   10.0   7.0065  -0.3173  14.3302 False 
 -3.0   -2.0   -1.353  -11.3214  8.6154 False 
 -3.0   -1.0    3.34   -7.2864  13.9664 False 
 -3.0   0.0    -1.03   -10.5345  8.4745 False 
 -3.0   1.0    0.8783  -10.7623 12.5189 False 
 -3.0   2.0   -1.2917  -12.9323 10.3489 False 
 -3.0   3.0    1.285   -12.1564 14.7264 False 
 -3.0   4.0    6.2025  -4.4239  16.8289 False 
 -3.0   5.0    1.2693  -7.8895  10.4281 False 
 -3.0   6.0    1.446   -7.0551   9.9471 False 
 -3.0   7.0    0.9642  -7.1607   9.0892 False 
 -3.0   8.0    5.3171  -2.3921  13.0263 False 
 -3.0   9.0    5.2736  -2.7592  13.3063 False 
 -3.0   10.0   6.7331  -0.5906  14.0568 False 
 -2.0   -1.0   4.693   -6.3502  15.7362 False 
 -2.0   0.0    0.323   -9.6454  10.2914 False 
 -2.0   1.0    2.2313   -9.791  14.2537 False 
 -2.0   2.0    0.0613  -11.961  12.0837 False 
 -2.0   3.0    2.638   -11.1353 16.4113 False 
 -2.0   4.0    7.5555  -3.4877  18.5987 False 
 -2.0   5.0    2.6223   -7.017  12.2616 False 
 -2.0   6.0    2.799   -6.2178  11.8158 False 
 -2.0   7.0    2.3172  -6.3458  10.9803 False 
 -2.0   8.0    6.6701  -1.6042  14.9445 False 
 -2.0   9.0    6.6266  -1.9501  15.2032 False 
 -2.0   10.0   8.0861   0.1697  16.0026  True 
 -1.0   0.0    -4.37   -14.9964  6.2564 False 
 -1.0   1.0   -2.4617  -15.0349 10.1116 False 
 -1.0   2.0   -4.6317  -17.2049  7.9416 False 
 -1.0   3.0    -2.055  -16.3118 12.2018 False 
 -1.0   4.0    2.8625  -8.7781  14.5031 False 
 -1.0   5.0   -2.0707  -12.389   8.2476 False 
 -1.0   6.0    -1.894  -11.6332  7.8452 False 
 -1.0   7.0   -2.3758  -11.7884  7.0369 False 
 -1.0   8.0    1.9771  -7.0791  11.0333 False 
 -1.0   9.0    1.9336  -7.3997  11.2668 False 
 -1.0   10.0   3.3931  -5.3373  12.1236 False 
 0.0    1.0    1.9083  -9.7323  13.5489 False 
 0.0    2.0   -0.2617  -11.9023 11.3789 False 
 0.0    3.0    2.315   -11.1264 15.7564 False 
 0.0    4.0    7.2325  -3.3939  17.8589 False 
 0.0    5.0    2.2993  -6.8595  11.4581 False 
 0.0    6.0    2.476   -6.0251  10.9771 False 
 0.0    7.0    1.9942  -6.1307  10.1192 False 
 0.0    8.0    6.3471  -1.3621  14.0563 False 
 0.0    9.0    6.3036  -1.7292  14.3363 False 
 0.0    10.0   7.7631   0.4394  15.0868  True 
 1.0    2.0    -2.17   -15.6114 11.2714 False 
 1.0    3.0    0.4067  -14.6213 15.4346 False 
 1.0    4.0    5.3242  -7.2491  17.8974 False 
 1.0    5.0    0.391   -10.9691  11.751 False 
 1.0    6.0    0.5677  -10.2691 11.4045 False 
 1.0    7.0    0.0859  -10.4584 10.6302 False 
 1.0    8.0    4.4388  -5.7886  14.6661 False 
 1.0    9.0    4.3952  -6.0782  14.8687 False 
 1.0    10.0   5.8548  -4.0853  15.7948 False 
 2.0    3.0    2.5767  -12.4513 17.6046 False 
 2.0    4.0    7.4942  -5.0791  20.0674 False 
 2.0    5.0    2.561   -8.7991   13.921 False 
 2.0    6.0    2.7377  -8.0991  13.5745 False 
 2.0    7.0    2.2559  -8.2884  12.8002 False 
 2.0    8.0    6.6088  -3.6186  16.8361 False 
 2.0    9.0    6.5652  -3.9082  17.0387 False 
 2.0    10.0   8.0248  -1.9153  17.9648 False 
 3.0    4.0    4.9175  -9.3393  19.1743 False 
 3.0    5.0   -0.0157  -13.2149 13.1835 False 
 3.0    6.0    0.161   -12.5906 12.9126 False 
 3.0    7.0   -0.3208  -12.8248 12.1832 False 
 3.0    8.0    4.0321  -8.2058   16.27  False 
 3.0    9.0    3.9886  -8.4557  16.4329 False 
 3.0    10.0   5.4481  -6.5507   17.447 False 
 4.0    5.0   -4.9332  -15.2515  5.3851 False 
 4.0    6.0   -4.7565  -14.4957  4.9827 False 
 4.0    7.0   -5.2383  -14.6509  4.1744 False 
 4.0    8.0   -0.8854  -9.9416   8.1708 False 
 4.0    9.0   -0.9289  -10.2622  8.4043 False 
 4.0    10.0   0.5306  -8.1998   9.2611 False 
 5.0    6.0    0.1767   -7.936   8.2894 False 
 5.0    7.0   -0.3051  -8.0227   7.4126 False 
 5.0    8.0    4.0478  -3.2308  11.3265 False 
 5.0    9.0    4.0043  -3.6163  11.6248 False 
 5.0    10.0   5.4638  -1.4052  12.3329 False 
 6.0    7.0   -0.4818  -7.4062   6.4426 False 
 6.0    8.0    3.8711  -2.5604  10.3026 False 
 6.0    9.0    3.8276  -2.9885  10.6436 False 
 6.0    10.0   5.2871  -0.6769  11.2512 False 
 7.0    8.0    4.3529  -1.5725  10.2783 False 
 7.0    9.0    4.3093  -2.0313   10.65  False 
 7.0    10.0   5.7689   0.3545  11.1833  True 
 8.0    9.0   -0.0435  -5.8419   5.7548 False 
 8.0    10.0   1.416   -3.3518   6.1839 False 
 9.0    10.0   1.4596  -3.8155   6.7346 False 
----------------------------------------------

No comments: