Thursday, July 21, 2011

Exponentially Smoothed Diet

Body weight prediction based on irregular measurements over five weeks.
Green is the predicted path in the next ten days.
Exponential smoothing is a technique that can be applied to time series data, either to produce smoothed data for presentation, or to make forecasts. The time series data themselves are a sequence of observations. The observed phenomenon may be an essentially random process, or it may be an orderly, but noisy, process. Whereas in the simple moving average the past observations are weighted equally, exponential smoothing assigns exponentially decreasing weights over time.
[http://en.wikipedia.org/wiki/Exponential_smoothing]


I applied Exponential smoothing to the time series I obtained from my livestrong.com recordings. Of course I have the highest motivation to beware this noble technique from being wrong.
Find all the R code and data below.

# Exponential Smoother for Weight Prediction
# Author: roland
###############################################################################
require(zoo)
require(ggplot2)
require(forecast)
weightData <- read.zoo("weightData", format="%b %d %Y",sep=":")
qplot.zoo <- function(x) {
if(all(class(x) != "zoo")) stop("x must be a zoo object")
# merge your data with an empty zoo object that has an index value for
# every period you're interested in.
x <- merge(x, zoo(order.by=seq(start(x), end(x), by="days")))
# interpolate missing values
x <- na.spline(x)
x.df <- data.frame(dates=index(x), weight=coredata(x))
# exponential smoothing
fit <- ets(x)
predicted <- forecast(fit)
forecast <- with(predicted, data.frame(
weight = as.numeric(mean),
upper = as.numeric(upper),
lower = as.numeric(lower),
dates = max(x.df[["dates"]]) + seq_along(mean)
))
x.df$upper <- x.df$weight
x.df$lower <- x.df$weight
df <- rbind(x.df, forecast)
ggplot(df, aes(dates, weight)) +
geom_smooth(aes(ymin = lower, ymax = upper), stat = "identity",
colour = "black", fill = "green")
}
qplot.zoo(weightData)
Jun 19 2011:83.9864760385
Jun 20 2011:84.0007710707
Jun 22 2011:83.5018194633
Jun 23 2011:82.9983319322
Jun 24 2011:82.4993803248
Jun 27 2011:82.2997996818
Jun 29 2011:81.301896467
Jun 30 2011:81.5014771099
Jul 2 2011:82.0004287174
Jul 3 2011:80.4990379714
Jul 6 2011:80.9979895788
Jul 7 2011:80.199667007
Jul 8 2011:80.000086364
Jul 9 2011:79.5011347566
Jul 11 2011:80.000086364
Jul 12 2011:80.000086364
Jul 13 2011:79.5011347566
Jul 14 2011:79.1019734706
Jul 15 2011:79.2017637921
Jul 16 2011:78.498695618
Jul 18 2011:77.9997440106
Jul 20 2011:77.9997440106
view raw weightData hosted with ❤ by GitHub

1 comment:

Unknown said...

Prediction update:ideal body weight ETA 6th August 2011, based on linear regression
Coefficients:
(Intercept) x.df$dates
2951.7272 -0.1894
http://www.wolframalpha.com/input/?i=+84-+x+*+0.1894+%3D75
http://www.wolframalpha.com/input/?i=47+days+since+20th+june